On the Enumeration of Double-Base Chains with Applications to Elliptic Curve Cryptography
نویسنده
چکیده
The Double-Base Number System (DBNS) uses two bases, 2 and 3, in order to represent any integer n. A Double-Base Chain (DBC) is a special case of a DBNS expansion. DBCs have been introduced to speed up the scalar multiplication [n]P on certain families of elliptic curves used in cryptography. In this context, our contributions are twofold. First, given integers n, a, and b, we outline a recursive algorithm to compute the number of different DBCs with a leading factor dividing 23 and representing n. A simple modification of the algorithm allows to determine the number of DBCs with a specified length as well as the actual expansions. In turn, this gives rise to a method to compute an optimal DBC representing n, i.e. an expansion with minimal length. Our implementation is able to return an optimal expansion for most integers up to 2 bits in a few minutes. Second, we introduce an original and potentially more efficient approach to compute a random scalar multiplication [n]P , based on the concept of controlled DBC. Instead of generating a random integer n and then trying to find an optimal, or at least a short DBC to represent it, we propose to directly generate n as a random DBC with a chosen leading factor 23 and length `. To inform the selection of those parameters, in particular `, which drives the trade-off between the efficiency and the security of the underlying cryptosystem, we enumerate the total number of DBCs having a given leading factor 23 and a certain length `. The comparison between this total number of DBCs and the total number of integers that we wish to represent a priori provides some guidance regarding the selection of suitable parameters. Experiments indicate that our new Near Optimal Controlled DBC approach provides a speedup of at least 10% with respect to the NAF for sizes from 192 to 512 bits. Computations involve elliptic curves defined over Fp, using the Inverted Edwards coordinate system and state of the art scalar multiplication techniques.
منابع مشابه
The new protocol blind digital signature based on the discrete logarithm problem on elliptic curve
In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملExtended Double-Base Number System with Applications to Elliptic Curve Cryptography
We investigate the impact of larger digit sets on the length of Double-Base Number system (DBNS) expansions. We present a new representation system called extended DBNS whose expansions can be extremely sparse. When compared with double-base chains, the average length of extended DBNS expansions of integers of size in the range 200– 500 bits is approximately reduced by 20% using one precomputed...
متن کاملFast Elliptic Curve Cryptography Using Optimal Double-Base Chains
In this work, we propose an algorithm to produce the double-base chain that optimizes the time used for computing an elliptic curve scalar multiplication, i.e. the bottleneck operation of the elliptic curve cryptosystem. The double-base number system and its subclass, double-base chain, are the representation that combines the binary and ternary representations. The time is measured as the weig...
متن کاملFast Elliptic Curve Point Multiplication using Double-Base Chains
Among the various arithmetic operations required in implementing public key cryptographic algorithms, the elliptic curve point multiplication has probably received the maximum attention from the research community in the last decade. Many methods for efficient and secure implementation of point multiplication have been proposed. The efficiency of these methods mainly depends on the representati...
متن کاملA Comparison of Double Point Multiplication Algorithms and their Implementation over Binary Elliptic Curves
Efficient implementation of double point multiplication is crucial for elliptic curve cryptographic systems. We revisit three recently proposed simultaneous double point multiplication algorithms. We propose hardware architectures for these algorithms, and provide a comparative analysis of their performance. We implement the proposed architectures on Xilinx Virtex-4 FPGA, and report on the area...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014